HF
ߣ ʱ䣺2015-10-25 17132
|
|
HF LINQINTIE |
||
|
ٌWԺ |
hƌWčWԺ |
||
|
e |
ʿ |
||
|
о |
@ȾwD@ȾWơ@Ⱦ}ͭhаl |
||
|
TʿWԺ |
hƌWčWԺ |
||
|
ϵʽ |
qintlin@163.com |
||
|
˺ (300) |
㶫ҵѧhƌWčWԺڡʿҪԻϵˮȾεشƼؼ⣬չȾƻѧԭۺӦüо̽Ⱦˮ廷еѧΪЧӦзˮȾ뻷װΪˮȾṩƼ֧šֹصзƻ1헡ȻƌWĿ3헣V|ʡ“PӋ”MIFĿV|ʡƼӋcĿʡĿ20헣ԵһͨӍ߰lՓ130ƪSCI50ƪڙҰl15@ҭhoƌWg1헡V|ʡƌWg2헡 |
|
WI |
ƌWWλ hƌWhƌWc IWλ h |
|
|
1992.91996.6 ũҵѧֲﱣרҵѧʿѧλ 1998.92001.6 ũҵѧhרҵ˶ʿѧλ 2001.92004.6 ɽѧѧרҵʿѧλ |
|
|
20047 㶫ҵѧhƌWčWԺ |
|
ҪՓ |
1 Jin He, Qintie Lin*, Yanrong Luo,et al. Removal of arsenic from contaminated soils by combining tartaric acid with dithionite: An efficient composite washing agent. Journal of Environmental Chemical Engineering, 2023, 11: 109877. 2 Yongjie Ma, Qintie Lin*, Junli Zheng, et al. Fe-Cu co-doped carbon-based catalyst activating peroxydisulfate for the degradation of tetrabromobisphenol A: The dominant role of superoxide radicals. Journal of Water Process Engineering, 2023, 53: 103704. 3 Xindan Fan , Qintie Lin*, Kehuan Xu,et al. Activation of peroxydisulfate degradation of ciprofloxacin by nitrogen-doped modified graphitized iron-based carbon materials: The transition from free to nonfree radicals. Separation and Purification Technology, 2023, 316: 123783. 4 Kehuan Xu, Qintie Lin*, Xindan Fan,et al. Enhanced degradation of sulfamethoxazole by activation of peroxodisulfate with red mud modified biochar: Synergistic effect between adsorption and nonradical activation. Chemical Engineering Journal, 2023, 460: 141578. 5 Chen Yijun, Qintie Lin*,Wen Xiaoqing, et al. Simultaneous adsorption of As(III) and Pb(II) by the iron-sulfur codoped biochar composite: Competitive and synergistic effects. Journal of Environmental Sciences, 2023, 125: 14-25. 6 Junli Zheng, Qintie Lin*, Yuxin Liu, , et al Peroxymonosulfate activation by Mg-doped Fe-N carbon nanotubes: nonradical pathway transformations and singlet oxygen-dominated mechanism studies. Chemical Engineering Journal, 2023, 452: 139233. 7 Xindan Fan, Qintie Lin*, Junli Zheng, , et al. Peroxydisulfate activation by nano zero-valent iron graphitized carbon materials for ciprofloxacin removal: Effects and mechanism. Journal of Hazardous Materials, 2023, 437: 129392. 8 Libin Wu, Qintie Lin*, Hengyi Fu, , et al. Role of sulfide-modified nanoscale zero-valent iron on carbon nanotubes in nonradical activation of peroxydisulfate. Journal of Hazardous Materials, 2023, 422: 126949. 9 Jiaqi Li, Qintie Lin*, Haoyu Luo, et al. The effect of nanoscale zero-valent iron-loaded N-doped biochar on the generation of free radicals and nonradicals by peroxydisulfate activation. Journal of Water Process Engineering, 2022, 47: 102681. 10 Zhuofan Huang, Qintie Lin*, Nan Cai, et al. Coexistence of free radical and nonradical mechanisms for triclosan degradation by CuO/HNTs. Separation and Purification Technology, 2021, 276: 119318. 11 Quanfa Zhong, Qintie Lin*, Wenjie He, et al. Study on the nonradical pathways of nitrogen-doped biochar activating persulfate for tetracycline degradation. Separation and Purification Technology,2021, 276: 119354. 12 Hengyi Fu, Haoyu Luo, Qintie Lin*, et al. Transformation to nonradical pathway for the activation of peroxydisulfate after doping S into Fe3C-encapsulated N/S-codoped carbon nanotubes. Chemical Engineering Journal, 2021, 409: 128201-128213. 13 Jiangxin Xiang, Qintie Lin*, Xiaosheng Yao, et al. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environmental Research, 2021, 195: 110650-110659. 14 Haoyu Luo, Yijie Wang, Qintie Lin*. Key roles of the crystal structures of MgO-biochar nanocomposites for enhancing phosphate adsorption. Science of the Total Environment, 2021, 766: 142618-142628. 15 Quanfa Zhong, Qintie Lin⁎, Runlin Huang, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chemical Engineering Journal, 2020, 380: 122608-122617. 16 Zhuofan Huang, Qintie Lin⁎, Haoyu Luo, et al. Degradation of progesterone by coexisting free radical and nonradicalpathways in the CuO/HNTs-PS system. Chemical Engineering Journal, 2020, 398: 125458-125467. 17 Yupeng Wang, Qintie Lin*, Rongbo Xiao, et al. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicology and Environmental Safety, 2020, 206: 111179-111186. 18 Runlin Huang, Qintie Lin*, Quanfa Zhong, et al. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay. Arabian Journal of Chemistry, 2020, 13: 4994-5008. 19 Shuailong Cheng, Qintie Lin*, Yupeng Wang, et al. The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arabian Journal of Chemistry, 2020, 13: 5160-5170. 20 Haoyu Luo, Qintie Lin⁎, Xiaofeng Zhang, et al. Determining the key factors of nonradical pathway in activation of persulfate by metal-biochar nanocomposites for bisphenol A degradation. Chemical Engineering Journal, 2020, 391: 123555-123566. 21 Kun Li, Guangcai Yin, Qintie Lin*. Influence of Aged Biochar Modified by Cd2+ on Soil Properties and Microbial Community. Sustainability, 2020, 12, 4868-4883. 22 Haoyu Luo, Qintie Lin*, Xiaofeng Zhang, et al. New insights into the formation and transformation of active species in nZVI/BC activated persulfate in alkaline solutions. Chemical Engineering Journal,2019,359:1215-1223. 23 Xiaofeng Zhang, Qintie Lin*, Haoyu Luo, et al. Activation of persulfate with 3D urchin-like CoO-CuO microparticles for DBP degradation: A catalytic mechanism study. Science of the Total Environment, 2019,655:614-621. 24 Shuangshuang Liu,Yuanfeng Peng, Qintie Lin*,et al. Di\(2\Ethylhexyl) Phthalate as a Chemical Indicator for Phthalic Acid Esters: An Investigation into Phthalic Acid Esters in Cultivated Fields and E-Waste Dismantling Sites. Environmental Toxicology and Chemistry, 2019,00:1-11. 25 Jiangxin Xiang, Qintie Lin*, Shuailong Cheng, et al. Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide–rice husk biochar composite. Environmental Science and Pollution Research,2018,25:14032-14042. 26 XiaoshengYao, Qintie Lin*, Lingze Zeng, et al. Degradation of humic acid using hydrogen peroxide activated by CuO-Co3O4@AC under microwave irradiation. Chemical Engineering Journal,2017,330:783-791. 27Huanlong Peng,Songxiong Zhong, Qintie Lin*, et al. Characterization and secondary sludge dewatering performance of a novel combined aluminum- ferrous- starch flocculant (CAFS). Chemical Engineering Science,2017, 173:335-345. 28Songxiong Zhong, Guangcai Yin, Qintie Lin*. et al. Preparation, characterization and sludge conditioning performance of modified coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 2017,78:447-454. 29Huanlong Peng, Songxiong Zhong, Qintie Lin*, et al. Removal of both cationic and anionic contaminants by amphoteric starch. Carbohydrate Polymers, 2016,138:210-214. 30Qintie Lin*, Huanlong Peng, Songxiong Zhong, et al. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum –iron–starch flocculant. Journal of Hazardous Materials, 2015, 285:199-206. 31Qintie Lin*, Hanping Pan, Kun Yao, et al. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation. Water Science and Technology, 2015, 72.7:1184-1190. 32Qintie Lin*, Zhiliang Chen, Jieting Liu, et al. Optimization of struvite crystallization to recover nutrients from raw swine wastewater, Desalination and Water Treatment, 2014, 56(11):3106-3112. 33Qintie Lin*, Jianxin Pan, Qinlu Lin, et al. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere. Journal of Hazardous Materials,2013, 263:517-524. 34Qintie Lin*, Huanlong Peng, Qinlu Lin, et al. Formation, breakage and reformation of flocs formed by cationic starch. Water Science and Technology, 2013, 68(6):1352-1358. 35Qintie Lin*, Shu Qian, Congjian Li, et al. Synthesis, flocculation and adsorption performance of amphoteric starch. Carbohydrate Polymers, 2012,90 :275-283. 36Qintie Lin*, Hanping Pan, Haoping Huang, et al. Flocculation mechanism by a novel combined aluminum-ferrous-starch flocculant. Water Science and Technology, 2012, 65.12: 2169-217. 37Է, HF*, , .ṹͭ˫ƽ.ѧѧ,2019,39(5):1633-1638. 38С,HF∗,Фs,S,,,i,. VˮU}ϛ@ȾgЧcCо. hƌWW,2020,40(8): 3397-3404.
|
|
֪Rb |
ڙl 1 HFꡢ.[ӾˮٚЇlڙ̖ZL200610122598.7 2 HF.һNۺVXFƂ䷽Їlڙ̖ZL200710029328.6 3 HF⡢ƺƽ.һNFentoncշۻ̎}sUˮķЇlڙ̖ZL201010525993.6 4 HFɡ. T̎jϑBؽُUˮķ,Їlڙ̖ZL201310505908.3 5 HF˽¡ԽһNЧԱԵƱӦãЇlڙ̖ZL201410107494.3 6 HFٽܡգһNڴҺ豸Їlڙ̖ZL 201410107491.X 7 HFʤǿ־ȣһNȾؽ̻ʹ÷Їlڙ̖ZL201410107493.9 8 HFлޡν. һNյͻ̿δڱˮķйרZL201510935061.1 9 HF贡ν. һNڴڱˮĸйרZL201510950224.3 10 HFԶ桢־֣ƽʡǧ. һNЭ̼ͬлȾķйרZL201510949255.7 11 HFҦ.һNҺĴЇlڙ̖ZL201610236889.2 12 HF֣ƽ硢־.һNʯīϩǿ̼ƽлȾķЇlڙ̖ZL201611064722.9 13 HFĪġ֣.һNþ-̿ϲϵƱӦãЇlڙ̖ZL201611114669.9 14 HFҦТ䡢.һNŨлˮĴЇlڙ̖ZL201611073165.7 15 HF˧ʡǧ塢.һNϴʹ÷, Їlڙ̖ZL201811133316.2 ѹʾl 1 HFТ.һNһˮĴЇlՈ̖201610356821.8 2 HF־Īġ.һNˮ«-V}̿Ƃ䷽.ЇlՈ̖201611114518.3 3 HF硢֣ƽšS֡.һNۻƱӦãЇlՈ̖201710173271.0 4 HF塢š. һNˮĴЇlՈ̖201710879864.9 5 HFS֡С顢. һNۻƱӦ, ЇlՈ̖201810425193.3 6 HFȫ塢ʡǧ.һNڱˮķЇlՈ̖201810842579.4 7 HF˧ţ.һNлȾ豸ЇlՈ̖201910697129.5 8 HF˧i.һNEDTA-CuUˮĸ-÷ЇlՈ̖201910754023.4 9 HFi˧С.һNؽȾĸϴӦãЇlՈ̖201910754763.8 10 HFӾܡѦ.һNùڵۺˮƱЧķӦãЇlՈ̖202110674917.X 11 HF⡢iǡν.һN̿ϵƱЭͬȾķЇlՈ̖202110950289.3 12 HF.һNڽڷڸĴƱӦãЇlՈ̖202110933031.2 13 HFС顢աν.һNͬʱȥǦ鸴Ⱦ̿ϵƱӦãЇlՈ̖202110933025.7 14 HFܰ.һNڽɳǵ̼ϼӦ. ЇlՈ̖202210072456.3 15 HFνܰɻӾ. @Ⱦ}ϴ@Ⱦ}. ЇlՈ̖202210073052.6 16 HFӾܣν𣬷ܰɻ֣.һNڽ˫AF~ؓd̿ϼ䑪. ЇlՈ̖202211016523.6 17 HF֣ܰɻӾܡν.һNɵ̬ǰҩƱӦ. ЇlՈ̖202210815334.9 18 HFɻ֣ܰνӾ.һNڴǰijฺ̿ϼӦ. ЇlՈ̖202210912558. 19 ơHF֣ͥƺƷ.һNͭ̿ƱˮеӦ.ЇlՈ̖202211513561.2
|
|
Ŀ |
ԵһֵĿ 1 ϴcϵؽ/ЙCȥ}ϡgcb䣬cаlӋn}2018YFC18028032018.12-2021.11 2 VBhƼfͬģVcаlӋĿ2022060100572022.04-2025.03 3 nZVI/NBCɻ^cѵĽc{أȻƌWĿ422772402023.01-2026.12 4 F~̿^cPCBs@Ⱦص}CоȻƌWĿ216770412017.01-2021.12 5 ҎģBֳҺֵãV|ʡ“PӋ”MIFĿ2015YT02N0122016.06-2021.05 6 /^̼c}@ȾصÙCc{оȻƌWĿ413713172014.01-2017.12 7 Dz˵͵Դ@ȾmügcģʽشƼаln}2017YFD08013022017.01-2020.12 8 僰wؽ-軯}ϛ@Ⱦ}PIgcO䣬V|ʡƼӋcĿ2017B020216002, 2017.01-2019.12 9 ؽcЙC}ϛ@Ⱦ}PIgоcʾ, VЮbWЅfͬش(201604020077), 2016.01-2018.12 10 㶫ʡҵȾ״滮о㶫ʡ滮Ŀ2017.03-2018.02 11 V|ʡrõԔ@Ⱦ綨V|ʡrIdGDNYHB20170242017.12-2019.06 12 V|ʡrõԔD澎ơɹɣV|ʡrIdGDNYHB20170252017.12-2019.12
ԵһֵˮĿ 1IUˮж|pc_βˮ̎ÓgоʾشƼn}2009ZX07211-005 2ߝyЙCUˮ̎gcOоƼԺg_lо헣2012EG111121 3̎BVҺijgcOоƼԺg_lо헣2013EG111128 4AC-Fe3O4-CuO/PSwϵߝЙCUˮоV|ʡƼӋĿ2014A020216041 5ߝy}sUˮ̎PIgоãV|ʡbWнYĿ2012B091100176
|
|
Ҫ@ |
1ͅ^I@Ⱦ؉KLUOc}gã2018ҭhoƌWgȪ 2iҎģBֳcS@̎YԴPIgо2015V|ʡƌWgȪ 3ooԄӿƶѷʳgcO䣬2016V|ʡƌWgȪ |


















