
Wѣʿ
Q
I
ϵehϵ
]䣺soon.thiam.khu@tju.edu.cn
Ԓ022-87402075
ͨӍַ
ˮϵͳۺģоУϾ÷չսԡáˮͳдģͣ“ˮۺģ”Ե“ۺģУ˷”üȾԶˮʶδõӰṩٷdzʩĹ滮ƶˮˮʵӰ쿼ȫϵͳصģģϵͳĸչԣóɹĹʹ˾Halcrow GroupISIS-GISУΪļģ飬Ϊ滮ӦոA96ȵ滮ĿĿṩ35000µסҵֵδ20ォﵽ100Ӣۺ951.7Ԫ
LˮϢAоc㷨ăо_lϵһ“tĿ˃㷨“K״΄“ԪԄәCz”Ĺ̃㷨^Vij㷨ԄCParetoǰ⡢GPԄCĿ˃㷨ƫȵȡWĵˮchо_l㷨ܷgͻ_䠑AUTOCALܛĺļgɠMIKE̘IܛIăģKĿǰг^30ҏVʹá
1997.09-1998.12¼WᎧоԺоʿgˮоԺW
19981«@C̲ʿWλ
1994.07@¼Wľ̌WʿWλ
lrg2021-04-28

Q
ϵehϵ
ҪоˮhϵyCģMoˮܾWҎcOӋǻˮգˮϵycҎ㷨c_l\ˮČWˮϢW
kԒ022-87402075
]䣺soon.thiam.khu@tju.edu.cn
ѣ
2019/08—WhWԺԺLڣʿ
2015/08—2019/07ĴĪ{ʲWpУ^ľϵΣ
2012/08—ЇhƌWԺ⼮
2009/06—WhƌWčWԺ
2011/08—Їˮˮ늿ƌWоԺ
2010/02—2015/07Ӣ_YWhcΣ
2000/10—2010/06ӢشW̡ӋcWWԺv
2000/04—2000/09mؼgWоT
1998/07—2000/03ˮооT
1994/07 - 1998/07, ¼¹ѧľ뻷̣ʿ
1991 /07- 1994/07, ¼¹ѧḷ̌˶ʿ
@r
2019 Ҹ߲˲
2012 ӢʼŮʿƼ
Wg
Hˮfˮϵy{ȷ֕ϯ
ҿƼӋĿ˲u
ȻƌWĿu
ҎYԴ
شQԃՓC
“ꑺyIPIgҎchYԴɳmù̼g”g^
ڿ JAWRAWEMJFRMJHER ڿ
Ҫоɹ
ǻˮϵͳƽ̨ĿijˮˮϵͳŻɹܵ㷺Ӧãͬʱƶŷ H2020ɳչ֮ĿˮƵĿٷģΪISIS-GIS ļⴴ 951.7 Ԫҵֵӿ̬ɳģʶо“ԪԶŴŻ”Ż㷨Ϊ MIKE жĿˮϵͳģʶ֤Ĺؼģ飬㷺Ӧ 30 ҡ
Ŀ
Ⱥ/йӢίĿŷĿӢŷ˫ĿԼ 42 ĿܶԼ 5000 ҡĿ磺
1. ŷH2020RECONECT: Regenerating ECOsystems with Nature-based solutions for hydro-meteorological risk reduction2018/05- 2022/0450ŷԪ
2. “ʮ”صзƻ⣬ߺˮͻӦռ2017/12-2021/12304Ԫ
3. ĪʲѧCRM2403River of Sustainability2017/12-2018/0625ּأ
4. ĪʲѧAEP-17-016multidisciplinary research competitive grant application year 2017-pump priming scheme2017/06-2017/12 73680ּأ
5. “ʮ”صзƻĿشˮŦ밲ȫмо2016/07-2021/123000
6. Ȼѧϻ𣬿ٳл꾶Ⱦڱ仯Ļ벻ȷԣ2011/01-2013/1237
7. ŷFP6New Approaches to Adaptive Water Management under Uncertainty2005/01-2009/0215118673ŷԪ
8. ӢȻѧо»ᣬMulti-objective pipe network optimization: A holistic approach for design, upgrading and expansion2002/10-2004/0764155Ӣ
Փģ
SCI 200 ƪˮϵͳŻ㷨Ĵĵƪ 510 Σִ£
1. ˮѧ——ۿ.ѧѧ(Ȼѧ빤̼), 2021, 54(10): 991-997.
2. ˮѧ——ϵ.ѧѧ(Ȼѧ빤̼), 2021, 54(11): 1101-1110.
3. Effect of coagulation on bio-treatment of textile wastewater: Quantitative evaluation and application[J]. Journal of Cleaner Production, 2021(7):127798.
4. Simulation platform of human-environment systems for water environment carrying capacity research. J. Cleaner Production, 2020,250:119577.
5. Validation of the hypothesis on carrying capacity limits using the water environment carrying capacity. Sc. Total Env., 2019,665:774-784.
6. Modelling the combined effects of runoff reduction and increase in evaporatranspiration for green roofs with a storage layer. Ecological Engineering, 2019, 127:302-311.
7. Status and challenges of water pollution problems in China: learning from the European experience. Environ. Earth Sc., 2014,72:1243-1254.
8. Efficient Multi-Objective Optimal Design of Water Distribution Networks on a Budget of Simulations Using Hybrid Algorithms, Environm. Model. Softw., 2019,24(2):202–213.
9. Use of surrogate modelling for multiobjective optimisation of urban wastewater systems. Water Science and Technology, 2019,60(6): 1641-1647.
10. Incorporating multiple observations for distributed hydrologic model calibration: an approach using a multi-objective evolutionary algorithm and clustering. Adv. in Water Resour. 2008,07: 1387–1398.
11. Water quality Model Calibration under Unknown Demands. ASCE J. Water Res. Plng & Mgt. 2008,134(4):326-336.
12. An Investigation on Preference Ordering Ranking Scheme in Multiobjective Evolutionary Optimization, IEEE Trans. Evol. Computation, 2007,11(1):17-45.
13. Incorporating spatial and temporal information for urban drainage model calibration: an approach using Preference ordering genetic algorithm. Adv. in Water Resour. 2006,29(8).
14. From single-objective to multiple-objective multiple-rainfall events automatic calibration of urban storm water runoff models using genetic algorithms. Water Science and Technology, 2006,54(6-7): 57-64.
15. A novel evolutionary metaheuristic for the multi-objective optimisation of real-world water distribution networks, Engrg Opt., 2006,38(3):1-18.
16. Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration, Water Resour. Res., 205,41(3),
17. A novel cellular automata approach to optimal water distribution network design, J. Computing in Civil Engrg., ASCE, 2006,20(1):49-56.
18. A hybrid genetic algorithm for the design of water distribution networks, Engrg. Applications of Artificial Intelligence, 2005,18(4):461-472.
19. Reduction of Monte Carlo simulation runs for uncertainty estimation in hydrological models, Hydrol. Earth System Sc., 2003,7(5):680-692.
20. Genetic programming and its application in real-time flood forecasting. J. American Water Resources Assoc., 2001, 36(2):439- 452.
挣:
1. Proc. 8th International Conference on Computing and Control of the Water Industry: Water Management for the 21st Century. ISBN 0-9539140-2-X
2. Proc. ACTUI 2004: Decision Support in the Water Industry under Conditions of Uncertainty. ISBN: 09-539140-1-1.
3. ˮ½룺ˮǵ, ѧ.
4. Applications of Evolutionary Computing in Hydrological Sciences. In Anderson, M.G., ed., Encyclopaedia of Hydrological Sciences: J. Wiley. 2005.
5. Many-Objective Evolutionary Optimisation, in Juan R. Rabuñal, Julián Dorado and Alejandro Pazos (eds),Encyclopaedia of Artificial Intelligence, Information Science Publisher. ISBN: 978-1-59904-849-9
6. Stochastic System Dynamics Integrative Model: An Integrated Modeling Framework Spanning Policy Domains Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods.
7. Research and Innovation Mapping Study for the UK Water Research and Innovation Framework. UKWIR Report Ref. No. 11/RG/10/6
ڙl:
1. һˮʩùܵڱװ, 2021-1-12, CN202110038500.4
2. һֽʽũӲ̬ˮ, 2019-8-6, ZL201910719733.3
3. һֵˮˮװ, 2021-1-12, CN202110038465.6
4. һˮʲ豸, 2021-1-12, CN202110037799.1
5. һˮװ, 2019-8-6, ZL201910719725.9
6. һֽʽԷˮװ, 2021-08-06, CN113216062A.

















