ه
ĴWBchWԺhƌWc̣ϵ//ʿ

ه
ĴWBchWԺhƌWc̣ϵ//ʿ
Lڏ¸̎gՓcbоx˲ӋWߣ2020Clarivateȫ߱Wߣ2022˼ΨЇ߱Wߣ2022-2023Եһ/ͨӍNature CommunicationsEnvironmental Science & TechnologyWater ResearchACS CatalysisڿSCI200ƪȨйר23ר2רת14ɹӦڸѶȻˮ̶ؼѡ2022꡶ȽȾμĿ¼ˮȾĴʡƼһȽ11/102020йҵЭỷһȽ21/15, 20202/15, 2022ڶʮĽйר㽱1йѧѧѧҽйпѧоˮˮֻ̬ḱ鳤Chinese Chemical LettersִࡢEnvironment Functional Materialsࣨ
ه
ه
Ԅe
£1981-3
Wλʿ
Q
ϵԒ
]䣺laibo@scu.edu.cn
ͨӍַɶһh·һ24̖
]610065


ڣhƌWcϵΣcоˮ@Ⱦƹ̼gb䡣x˲ӋWߡClarivateȫ߱Wߣ2022˼ΨЇ߱Wߣ2022ȫǰ2%ѧҰ2020-2022ȫǰ10ѧ2021-2022ȫ24947ͨѶEnvironmental Science & TechnologyWater ResearchڿSCI80ƪSCIĽ9000ΣH61Google ScholarͬʱѡESI߱40ƪȵ2ƪ2023.03αר2ࣩ1ࣩӢר2Ȩйר16ר1רת12ɹӦڸѶȻˮ̶ؼѡ2022꡶ȽȾμĿ¼ˮȾĴʡƼһȽ11/102020йҵЭỷһȽ21/15,20202/15,2022йѧѧѧҽĴʡƼһȫʿ´ҵҵ飩ڶʮĽйЭǽܳɹתйпѧоˮˮֻ̬ḱ鳤Chinese Chemical LettersִࡢEnvironment Functional Materialsࣨ, 7ڿıί7ҵѧ/ЭרίԱŶѧȫԽ11˴Σҽѧ25˴ΣĴѧ“ʮ”о1ˣĴѧѧ֮3˴Ρ
W
12018.1— ĴѧѧԺָʦ
22018.1— Ĵѧ뻷ѧԺרҵϵ
32017.9— Ĵѧ뻷ѧԺרҵ
42013.9—2017.9ĴBchWԺȟI
52011.10—2013.9ĴBchWԺȟIʿ
62008.5—2011.7IڱWȟI@WʿWλ
72005.9—2008.4IڱƼWﻯI@WTʿWλ
82001.9—2005.7IڱƼWȟI@WWʿWλ
ҪоI
1rFw̎gb
2늴̎gb
3^}̎gb
4yȻUˮ̎gb估
5tԺ@ˮͬ̎gb估
ГҪn
ṇcLC2014ˮ@Ⱦƹ̡2015-2018
оṇˮ̎еĸgԭ̑á2014
ԿĿ
[1]Ҽ˲YĿ2020.01-2023.12
[2]ȻƌWĿ520701332021.01-2024.12
[3]ĴʡƼdƼɹDDʾĿ20ZHSF02572020.01-2021.12
[4]У“ƸUˮ̎gаlό”Ŀ2020.12-2023.12
[5]У“늻WUˮ̎gό”Ŀ2020.6-2023.6
[6]ȻƌWĿ518784232019.01-2022.12
[7]ĴʡܳƼ˲ţ2019.01-2021.12
[8]ĴʡcаlĿ2019YFG03142019.01-2020.12
[9]ĴijˎbUˮ̎g_l̻ã2017.1-2020.12
[10]hӋĿϵ^n}2111101-062016-2019
BW@ȫԪsu
[1]_Ϸ2022ʮÊWZˮ|cˮhW“Tʿоe”
[2]2022ڰˌñWТhƌWªWȣ
[3]ܳf2022ڰˌñWТhƌWªWȣ
[4]ܳf2022ʮߌȫоhՓ^MصȪ
[5]هٶ䣬2021Ϻͬ͢ҫ격ʿܳ˲ŪW
[6]ܼt褣2021ߌТhƌWªW𣨶ȣ
[7]2019ʮÊWZˮ|cˮhW𣨶Ȫ
[8]2019Ϻͬ͢ҫ격ʿܳ˲ŪW
[9]2019ϾWϽȫdhWӪ
[10]2018ČñWТhƌWªW
[11]ݣ2017ȫУhI㮅IOӋ
Փ
[1]H.Y. Zhou, J.L. Peng, X.G. Duan*, H.X. Yin, B.K. Huang, C.Y. Zhou, S. Zhong, H. Zhang, P. Zhou, Z.K. Xiong, Z.M. Ao, S.B. Wang, G. Yao,B. Lai*,Redox-active Polymers as Robust Electron-Shuttle Co-Catalysts for Fast Fe3+/Fe2+ Circulation and Green Fenton Oxidation,Environ. Sci. Tech.,57 (2023).3334-3344.
[2]X.H. Wang, Z.K. Xiong*, H.L. Shi, Z.L. Wu, B.K. Huang, H. Zhang, P. Zhou, Z.C. Pan, W. Liu,B. Lai*,Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis,Appl. Catal. B: Environ.329 (2023) 122569.
[3]Z.H. Xie, C.S. He*, Y.L. He, S.R. Yang, S.Y. Yu, Z.K. Xiong, Y. Du, Y. Liu, Z.C. Pan, G. Yao,B. Lai*,Peracetic acid activation via the synergic effect of Co and Fe in CoFe-LDH for efficient degradation of pharmaceuticals in hospital wastewater,Water Res.,232 (2023) 119666.
[4]Y.N. Jiang, B.Y. Gao, Z.J. Wang, J. Li, Y. Du*, C.S. He, Y. Liu, G. Yao,B. Lai*,Efficient wastewater disinfection by raised 1O2 yield through enhanced electron transfer and intersystem crossing via photocatalysis of peroxymonosulfate with CuS quantum dots modified MIL-101(Fe) ,Water Res.,229 (2023) 119489.
[5]Z.H. Xie, C.S. He, H.Y.Zhou, L.L. Li, Y. Liu, Y. Du, W. Liu, Y. Mu,B. Lai*,Effects of Molecular Structure on Organic Contaminants’ Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS,Environ. Sci. Tech.,56 (2022) 8784-8795.
[6]S.Li, Y.L. Yang, H.S. Zheng, Y.J. Zheng, C.S. He*,B. Lai*, J. Ma, J. Nan, Introduction of oxygen vacancy to manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation,Water Res.,225(2022) 119176.
[7]P. Zhang, P. Zhou*, J.L. Peng, Y. Liu, H. Zhang, C.S. He, Z.K. Xiong, W. Liu,B. Lai*,Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator.Water Res.,219(2022) 118626.
[8]S.R. Yang, C.S. He*, Z.H. Xie, L.L. Li, Z.K. Xiong, H. Zhang, P. Zhou, F. Jiang, Y. Mu,B. Lai*,Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species.Water Res.,217(2022) 118402.
[9]S. Meng, P. Zhou, Y.M. Sun, P. Zhang, C.Y. Zhou, Z.K. Xiong, H. Zhang, J. Liang,B. Lai*,Reducing agents enhanced Fenton-like oxidation (Fe(III)/Peroxydisulfate): Substrate specific reactivity of reactive oxygen species.Water Res.,218(2022) 118412.
[10]M.F.Luo, H. Zhang, P. Zhou, Z.K. Xiong, B.K. Huang, J.L. Peng, R. Liu, W. Liu,B. Lai*,Efficient activation of ferrate(VI) by colloid manganese dioxide: Comprehensive elucidation of the surface-promoted mechanism.Water Res.,215(2022) 118243.
[11]C.Y. Zhou, P. Zhou, M.L. Sun, Y. Liu, H. Zhang, Z.K. Xiong, J. Liang, X.G. Duan,B. Lai*,Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: Role of near-free iron(III) for sustainable iron(III)/iron(II) cycles.Water Res.,210(2022) 117984.
[12]P. Zhou, Y.Y. Yang, W. Ren, X.J. Li, Y.L. Zhang,B. Lai*, S.B. Wang, X.G. Duan*, Molecular and kinetic insights to boron boosted Fenton-like activation of peroxymonosulfate for water decontamination,Appl. Catal. B: Environ.319 (2022) 121916.
[13]A.F. Wang, P. Zhou, D.Q. Tian, H. Zhang, Z.K. Xiong, Y. Du, C.S. He, Y. Yuan, T.T. Chen, Y. Liu*,B. Lai*, Enhanced Oxidation of Fluoroquinolones by Visible Light-Induced Peroxydisulfate: The Significance of Excited Triplet State Species,Appl. Catal. B: Environ.316 (2022) 121631.
[14]X.H. Long, Z.K. Xiong*, R.F. Huang, Y.H. Yu, P. Zhou, H. Zhang, G. Yao,B. Lai*, Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: Collaboration of radical and non-radical mechanisms,Appl. Catal. B: Environ.317 (2022) 121716.
[15]Y.L. He, C.S. He*, L.D. Lai, P. Zhou, H. Zhang, L.L. Li, Z.K. Xiong, Y. Mu, Z.C. Pan, G. Yao,B. Lai*,Activating Peroxymonosulfate by N and O Co-doped Porous Carbon for Efficient BPA Degradation: A Re-visit to the Removal Mechanism and the Effects of Surface Unpaired Electrons.Appl. Catal. B: Environ.314 (2022) 121390.
[16]K.X. Wei, A. Armutulu, Y.X. Wang, G. Yao, R.Z. Xie*,B. Lai*,Visible-light-driven removal of atrazine by durable hollow core-shell TiO2@LaFeO3 heterojunction coupling with peroxymonosulfate via enhanced electron-transfer.Appl. Catal. B: Environ.303 (2022) 120889.
[17]M.F. Luo, H.Y. Zhou, P. Zhou, L.D. Lai, W. Liu, Z.M. Ao, G. Yao, H. Zhang*,B. Lai*,Metal-free Black-red Phosphorus as an Efficient Heterogeneous Reductant to Boost Fe3+/Fe2+ Cycle for Peroxymonosulfate Activation.Water Res.,188 (2021) 116529.
[18]M.F. Luo, H.Y. Zhou, P. Zhou, L.D. Lai, W. Liu, Z.M. Ao, G. Yao, H. Zhang*,B. Lai*,Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate (VI) towards oxidation of organic contaminants.Water Res.,203(2021) 117548.
[19]J.L. Peng, P. Zhou, H.Y. Zhou, W. Liu, H. Zhang, C.Y. Zhou, L.D. Lai, Z.M. Ao, S.J. Su,B. Lai*,Insights into the Electron-Transfer Mechanism of Permanganate Activation by Graphite for Enhanced Oxidation of Sulfamethoxazole.Environ. Sci. Tech.,55 (2021) 9189-9198.
[20]J.Y. Li, Z.K. Xiong*, Y.H. Yu, X.H. Wang, H.Y. Zhou, B.K. Huang, Z.L. Wu, C.X. Yu, T.T. Chen, Z.C. Pan, G. Yao,B. Lai*,Efficient degradation of carbamazepine by electro-Fenton system without any extra oxidant in the presence of molybdate: The role of slow release of iron ions.Appl. Catal. B: Environ.298 (2021) 120506.
[21]L.D. Lai, P. Zhou, H.Y. Zhou, M.L. Sun, Y. Yuan, Y. Liu, G. Yao,B. Lai*,Heterogeneous Fe(III)/Fe(II) circulation in FeVO4 by coupling with dithionite towards long-lasting peroxymonosulfate activation: Pivotal role of vanadium as electron shuttles.Appl. Catal. B: Environ.297 (2021) 120470.
[22]L.D. Lai, H.D. Ji, H. Zhang, R. Liu, C.Y. Zhou, W. Liu, Z.M. Ao, N.W. Li, C. Liu*, G. Yao,B. Lai*, Activation of Peroxydisulfate by V-Fe Concentrate Ore for Enhanced Degradation of Carbamazepine: Surface ≡V(III) and ≡V(IV) as Electron Donors Promoted the Regeneration of ≡Fe(II).Appl. Catal. B: Environ.282 (2021) 119559
[23]H.Y. Zhou, H. Zhang, Y.L. He, B.K. Huang, C.Y. Zhou, G. Yao,B. Lai*, Critical Review of Reductant-enhanced Peroxide Activation Process: Trade-off between Accelerated Fe3+/Fe2+ Cycle and Quenching Reactions.Appl. Catal. B: Environ.286 (2021) 119900.
[24]Z.K. Xiong, J.Y. Li, Y. Li, Y. Yuan, Y.N. Jiang, G. Yao,B. Lai*, Simultaneously enhanced degradation of N, N-dimethylacetamide and reduced formation of iron sludge by an efficient electrolysis catalyzed ozone process in the presence of dissolved silicate.J. Hazard. Mater.,406 (2021) 124725.
[25]Z.L. Wu, Y.P. Wang, Z.K. Xiong*, Z.M. Ao, S.Y. Pu, G. Yao,B. Lai*, Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine.Appl. Catal. B: Environ.277 (2020) 119136.
[26]Z.K. Xiong, H. Zhang, W.C. Zhang,B. Lai*, G. Yao, Removal of nitrophenols and their derivatives by chemical redox: A review,Chem. Eng. J.,359 (2019) 13-31.
[27]J. Li, Y.J. Wan, Y.J. Li, G. Yao,B. Lai*, Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine,Applied Catalysis B: Environmental,256 (2019) 117782.
[28]Z.K. Xiong,B. Lai*, P. Yang, Insight into a highly efficient electrolysis-ozone process for N,N -dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions,Water Res.,140 (2018)12-23.
[29]J.F. Yan, J.L. Peng, L.D. Lai, F.Z. Ji, Y.H. Zhang,B. Lai*, Q.X. Chen, G. Yao, X. Chen, L.P. Song, Activation CuFe2O4by Hydroxylamine for Oxidation of Antibiotic Sulfametheoxazole,Environ. Sci. Tech.,52 (2018)14302-14310.
[30]J. Li, Q. Liu, Q.Q. Ji,B. Lai*,Degradation ofp-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM).Appl. Catal. B: Environ.200 (2017) 633-646.
[31]Y. Yuan,B. Lai*, Y.Y. Tang,Combined Fe0/air and Fenton process for the treatment of dinitrodiazophenol (DDNP) industry wastewater.Chem. Eng. J., 283 (2016)1514-1521.
[32]Y. Ren, Y. Yuan,B. Lai*, Y.X. Zhou, J.L. Wang,Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).J. Hazard. Mater., 302 (2016) 36-44.
[33]Z.K. Xiong, Y. Yuan,B. Lai*, P. Yang, Y.X. Zhou,Degradation ofp-nitrophenol (PNP) in aqueous solution bya novel micro-sizeFe0/O3process (mFe0/O3): Optimization, kinetic, performance and mechanism,Chem. Eng. J.302 (2016) 137-145.
[34]Z.K. Xiong,B. Lai*, P. Yang, Y.X. Zhou, J.L. Wang, S.P. Fang,Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.J. Hazard. Mater., 297 (2015) 261-268.
[35]B. Lai*, Y.H. Zhang, Z.Y. Chen, P. Yang, Y.X. Zhou, J.L. Wang,Removal ofp-nitrophenol (PNP) in aqueous solution by themicron-scale iron-copper (Fe/Cu) bimetallic particles.Appl. Catal. B: Environ.144 (2014) 816-830.
g
[1] Z.K. Xiong, Y. Liu, P. Zhou, H. Zhang,B. Lai*, Zero Valent Iron-induced Fenton-like Oxidation Towards Water Treatment. Chemistry in the Environment Series, Advanced Ozonation Processes for Water and Wastewater Treatment: Active Catalysts and Combined Technologies. (Invited Book Chapter 2).
[2] P. Zhou, Y. Liu, Z.K. Xiong, H. Zhang,B. Lai*, Zero Valent Iron-induced Fenton-like Oxidation Towards Water Treatment. Chemistry in the Environment Series, Emerging Nanotechnologies for Water Treatment. (Invited Book Chapter 12).
[3]هࣩ͵ܱ¶ױֲᣨͭп̡й漯ţ2021.
[4]هࣩ͵ܱ¶ױֲᣨӡ顢Ǧй漯ţ2019.
[5]ϪهСµȣлϸѧƷҵȾۺϷѿԼѧҵ磬2015.
Wg
[1]ЇпƌWоˮhcˮB֕ؕL
[2]Chinese Chemical Lettersִ/ί
[3]Environment Functional Materialsࣨ
[4]Water Reuse༭
[5]Journal of Hazardous Materialsί
[6]Journal of Environmental Scienceί
[7]ˮBWs־ί
[8]̿ƌWcgί
[9]ľcȟWӢģվί
[10]ЇӚ⡷ί
[11]ɶЭhƌWWƌWҹίT-ίT
[12]ЇWIίTھŌίTίT
[13]ЇWhWƌί2018ЇWhWǰӑՓͬϯ
[14]ЇhƌWWƌWҷ֕ίTίT
[15]ЇtWbftԺBcb֕һ÷֕ίTtԺˮϵyIίTίT
[16]ĴʡѭhfڶԃίT-ίT
[17]ĴʡWWhWIίTһίT
[18]Ĵʡˮȫcˮ@Ⱦƹ̼gоĈ
[19]Ї悹ˮˮf깤ίTίT
[20]ɶпƌWgfھŴδ
[21]ĴʡhobIfˮ@Ⱦη֕ҽMML
su
[1]2022ЇhbIfƼMһȪ2/15HJJS-2022-1-02-G02
[2]2022PIgx“M@ȾμgĿ䛣ˮ@ȾI”
[3]2022xClarivateȫ߱W
[4]2022x˼ΨЇ߱W
[5]2022ڶʮČЇƅfǂܳɹD
[6]2021PIgxɶ“ɶBhMgˇ”
[7]2021PIgxĴʡBhg2020ȰƤˮhI
[8]2021ЇhƌWWƌWҪ𪄣
[9]2021һȫʿᄓIِyIM
[10]2021ȫI㲩ʿ
[11]2021-2022xȫWߎ“ȫ피ǰ10fƌW”ȫ24947
[12]2020ЇhbIfƼMһȪ1/15HJJS-2020-1-02-G01
[13]2020ĴʡƼMһȪ1/102020-J-1-11-R01
[14]2020ĴʡƼ
[15]2020ĴʡhƌWWƼ
[16]2020-2022ѡȫǰ2%ѧҰWorld’s Top 2% Scientists 2020
[17]2020Elsevier Symposium on “Chemistry for a Sustainable Future” Best Paper Award
[18]2019@ĴW“Ⱥ”ĻOF
[19]2019@“ĴWδ탞Wߪ”
[20]2019“ױ”Chinese Chemical Lettersѧѧҽ
Ԍ
[1]هƽ,ϴֱ˹ʪ, 2013.7.24,йZL201210083704.0
[2]هƽһѳ̿ⷴӦϱۻĤķ2013.8.21йZL201210138494.0
[3]هƽһѳ̿ⷴӦϱۻĤķ2013.12.11йZL201210138774.1
[4]هǿ,ƽ,һֳǿͭ˫Ӵˮķ, 2014.6.4,йZL201210303778.0
[5]ه,ǿ,һͭ˫Ӵѽˮķ, 2014.4.16,йZL201210303734.8
[6]ه,ܡɢֲͭͭϼƱ,2016.2.24,йZL201410169181.0
[7]ه,Ρ̼κCODŨȵĹҵˮ, 2016.3.30,йZL201410168503.X
[8]ه,ҶٷӦжѽˮװü, 2017.3.22,йZL201510257227.9
[9]ه.-ҶϷӦжѽˮ, 2018.2.2йZL201610078196.5
[10]ه.Ӧжѽˮװü2019.2.15йZL201610573560.5
[11]ه.ϼƱ2019.11.5йZL201710294711.8
[12]هź.һָӦ2019.4.2йZL201821232371.2
[13]هź.һָӦ2020.3.6йZL201920330326.9
[14]ه.--ʴ/--˫ˮ-ʴϴжѽˮķ2020.10.9йZL201910970649.9
[15]ه.һֵ-/˫ˮӦ2021.1.6йZL202021013871.4
[16]هź㣬 ̄δ.һ廯жѽˮװü2021.9.28йZL202010821497.9
[17]B. Lai, Z.K. Xiong, Z.C. Pan, Y. Liu, P. Zhou, H. Zhang, C.S. He, Y. LiElectrolysis-ozone-corrosion inhibitor/electrolysis-ozone-hydrogen peroxide-corrosion inhibitor coupling treatment method for toxic and refractory wastewater, US 11, 548, 797B2

















