
102
- ˶ʿʦ
- Ԅe
- ڣ1981-11-10
- Wѣʿо
- WλWʿWλ
- rg2006-07-10
- چλľ̌WԺ
- kcASWBTУ^ľWƌ507
- ]䣺zhenming@hqu.edu.cn
- Ϣڍ
- գо
- Wƣ
h
- ʡƼMȪ
- BTпƼMȪ
- ȪиߌӴ˲
- ASWhT
_ͨrg2020.7.16
rg2025.7.4
- ͬIT
˺
У198111³ˣйhTBƼẈoˮˮIʿעԹO乤̎(oˮˮ)
ASWľ̌WԺFBT@־hMɆTFΏBTгˮhBҎc}̼gоΡASWˮhcˮȫоΡЇhƌWWƌWҷ֕ίTHˮfIWAЇίTίTЇ悹ˮˮf깤ίTίTʡWoˮ֕ίTʡƼɆTBTиߌӴ˲ţȪMߌӴ΄I˲š
Ҫˮh}cˮ@Ⱦ/eYԴՓcgоˇҼʡȿvnĿ15˷ڵط50ʡƼMȪ1BTпƼMȪ2l40Ȩ20ѧՓ70ƪSCI/EI40ƪαʡ4
ϵʽ15345986078zhenming@hqu.edu.cnʡBTм^668̖ASWľ̌WԺ361021
һWg
ЇhƌWWƌWҷ֕ίTHˮfIWAЇίTίTЇ悹ˮˮf깤ίTίTʡWoˮ֕ίTʡhW£BTWoˮ֕ίTȪнoˮf£ȪнoˮfƌWgίTؕL
й-ѧרҿרңʡۺרңʡ̬רңʡרҿרңЭͬչ̬м٣пƼֿƼרңйռ̬רңнͨϵͳרң̬רʽרң̬⳥רң̬ӦרңȪгйרңȪпƼѯרңȪпЭƼרңȪ̬Ӧרҵȡ
Ҫо
1ˮh}cˮ@Ⱦ
2@/CYԴ
3dнO
Ŀ
1ֿvĿ
[1] ʡУbWĿ2024Y4006“кӺۺYԴؼ̼빤ʾ”
[2] ȻƌWĿ51408243“@Ⱦeʯw}^еwDC”
[3] ʡȻƌWĿ2019J01052“@ȾԶӸwͬpיC”
[4] ʡȻƌWĿ2015J01213“@ȾԱӸw}^̵wDC”
[5] BTȻƌWĿ3502Z202373041“кӺ@ȾԱӸwfͬpיC”
[6] BTиУԺbWĿ3502Z20203044“ˮhOycо”
[7] ȪиߌӴ˲Ŵ´ҵĿ2017Z025“џԜQˮS@bƷˮhеđ;оcҎģb”
[8] ȪпƼӋcĿ2014Z128“QˮS@YԴƂˮh}”
[9] 2015ȪЃ˲B헽MYĿ (15A12)
[10] ASW̎ƼYӋZQN-PY313“@ȾԌӸw}^ȺҎcÙC”
[11] ASWлYĿ14BS216“ʯwgԭλeﵪጷŵЧC”
[12] ASW“Sk”лY11QZR07“ȪˮԴˮeﵪΑBֲጷо”
2/cMn}
[1] Ȫ彭^й֣彭^źˮ|
[2] ϰгй֣ϰкˮҎ
[3] BTЭhƌWоԺ谲ˮ|QSβˮBaˮĭhLUu
[4] BTڳ˾йwUYԴPIgbƷbbаl
[5] BTЭhƌWоԺкӺYԴPIgо
[6] BTЭhˮƼɷ˾ӺCcYԴPIgһwbаl
[7] BTЭhƌWоԺ֞ˮ@ȾCо
[8] ɽ|¡ hblչ˾ЙC̏UYԴ/ǻۻ/һwOаl
[9] ӽO˾ڳײϵʩUˮügһwbаl
[10] BƼ˾˹ÓЧucPIg
[11] ˹̬h˾ӺѵؼװùӦ
[12] нfͽO˾ڳײϵijgcbаl
[13] AOOӋFɷ˾^ˮܾW칤̵OӋԃ
[14] ˹̬h˾ĿϪϪϪˮբΣˮ̬Ŀ
[15] ΡحhƼɷ˾BTˮܾWԴŲc켼gо
[16] Kƽˮ˾谲@ˮSƬ^ˮܾWԴŲ^ˮ|ˮzyc
[17] KƼFɷ˾~ЏN͏NYԴĿСhuOӋ
[18] нһ֏BT̹˾BT谲ܤˮhCPIgcbо
[19] KƼFɷ˾BTйˎZ@ˮܾWϵyOҎ
[20] Ȫнoˮfʯ{r@ˮPPPĿҬFzcu
[21] BT|蹤OӋ˾BT谲^dֹܾWŲ鼰؛@OӋ
[22] ұ\̼g˾“һp”~QɽOPPPĿϵyռ͛@ˮ̎팣Ҏ
[23] лֺ־֣źdнOʾˮȾԴLIDо
[24] лֺ־֣źdнOʾˮϵˮʼЧ뿼ָ㷽о
[25] к֣źdнOʾˮˮʡµȾѧģо
[26] BT谲ͶYF˾BT谲^Ϫ|Ϫ͡Ϫ@ȾԴ{顣
[27] BT谲ͶYF˾BT谲^|Ϫ谲ΣϪ|Ϫ͡Ϫ“һһnһ”ơ
[28] BT谲ͶYlչ˾谲yƬ^ˮܾW@ˮԴŲ顣
[29] BT谲ͶYF˾BT谲^亭ś@ڛ@ˮOy
[30] BTͬO֣BTͬ^ܤ^Ϫڳˮw@ȾF{Сuh
[31] BTͬO֣BTͬ^͡Ϫˮr@ˮ̼ܾ̎WƿоʩDOӋ
[32] BTˮռF˾ԴˮQˮSCϸMgо
[33] BT_l˾BT溣dԇcھOyվcOOyϢςӷա
[34] BT枳ͶY_l˾ˮ|Oycо
[35] ЇIOӋоԺ˾źzy
[36] BTйoYģoY^Ԡ{顣
[37] BTͬO֣BTͬ^ܿϪϪ߅Ρܤ^ϪڳˮwucN̖
[38] BT谲ͶYlչ˾谲͡Ϫˮhη
[39] ɽˮ̎hoϾhƌWоȪɽˮˮԴˮ@ȾҎ
[40] hoϾhƌWоȪɽˮ켰ŮˮTNTPԭ{cηо
ҪԌ
[1] һNQˮS@YԴƂาwϷ, lڙ̖ZL 201610200212.3
[2] һˮȾlڙ̖ZL 201610242578.7
[3] һֳкӵȾԸǰƱlڙ̖ZL 201910490943.X
[4] ȾԶ㸲lڙ̖ZL 201110450470.4
[5] ︡@Ⱦˮwԭλw}, lڙ̖ZL 201310545247.7
[6] һֿɵʽӪˮȾาǴʵרڙ̖ZL 201721540244.4
[7] һN@ȾˮֲcԸw}һwbã͌ڙ̖ZL 201822066314.8
[8] һװʽ˳װãʵרڙ̖ZL 201920456948.6
[9] һദװüƶװʽһ廯л豸ʵרڙ̖ZL 202421459074.7
[10] һֺӺԭλϴѸһ廯ۺʵרڙ̖ZL 202321011037.X
[11] һNdPPˮϵͳʵרڙ̖ZL 202420799647.4
[12] һNڞT@Ⱦ}CSGPԼƱװãlڙ̖ZL 202410700549.5
[13] һִҵĹ̻װãlڙ̖ZL 202410690518.6
[14] һNQˮS@Ƃiׄķl̖CN 201910496932.2
[15] һN̎l̖CN 2020109369905
[16] һNIаyˮw@Ⱦˮֲ}, l̖CN 202010937019.4
[17] һһνɢȾϷˮķl̖CN 202111613574.2
[18] һͬƵ൪͵ĻԸǰƱl̖CN 202111611546.7
[19] һˮȾˮשƱl̖CN 202410448490.5
[20] һӦķӦl̖CN 202410587424.6
@sur
[1] 2023BTиߌӴ˲
[2] 2021BTпƌWgMȪ1ܭhײƂPIgаl̑.
[3] 2021ASWhT̖.
[4] 2017ȪиߌӴ˲
[5] 2015긣ʡƌWgMȪ2Fi}Ƃ估ˮ̎еđ.
Փ
[1] Significant enhancement on diclofenac removal in the Cu(II)/ peroxymonosulfate process with neocuproine under neutral pH conditions: Performances, mechanism and anti-interference capability. Chemical Engineering Journal, 2024, 498: 155495. (SCI)
[2] Immobilization of Phosphorus in Sediment‑Water System by Active Capping Plate Under Exogenous Phosphorus Input. Water, Air, & Soil Pollution2024, 235:667. (SCI)
[3] Phosphate Removal and Mechanism of a Regenerated Aluminum-Based Phosphorus-Inactivation Agent. Environmental Engineering Science2024, 41(10):413-423.(SCI)
[4] Resource recovery of water treatment plant sludge and river sediment as phosphorus removal material: feasibility and mechanisms. Water Science & Technology, 2024, 90(6):1801-1813.(SCI)
[5] Efficiency and mechanism of controlling phosphorus release from sediment using a biological aluminum-based P-inactivation agent. Journal of Environmental Sciences, 2025, 150: 594-603. (SCI)
[6] BT֞ˮЙC|͠IB}ķֲcԴ@Ⱦur.ASWѧ(ȻƌW), 2024, 45(6): 730-739.
[7] BT֞ˮؽٛ@Ⱦrur. ASWѧ(ȻƌW), 2024, 45(2): 262-270.
[8] Micro-pressure promotes endogenous phosphorus release in a deep reservoir by favouring microbial phosphate mineralisation and solubilisation coupled with sulphate reduction. Water Research, 2023, 245:120647.(SCI)
[9] Effect of controlling nitrogen and phosphorus release from sediment using a biological aluminum–based P-inactivation agent (BA-PIA). Environmental Science and Pollution Research, 2023, 30:86425-86436. (SCI)
[10] QˮS@/ӵџƂײϼо. h, 2023, 41(8): 171-180
[11] Activation of peroxymonosulfate by catalysts derived from water treatment plant sludge for the simultaneous removal of Disperse Blue 56 and phosphates. Environmental Science and Pollution Research, 2023, 30: 35683-35697. (SCI)
[12] Removal efficacy and mechanism of nitrogen and phosphorus by biological aluminum-based P-inactivation agent (BA-PIA). Journal of Environmental Sciences, 2023, 127: 187-196. (SCI)
[13] Effect of aluminium-based P-inactivation agent (Al-PIA) capping on bacterial community in sediment. Journal of Soils and Sediments, 2022, 22(4): 1344-1354. (SCI)
[14] Three kinds of active thin-layer capping materials for reducing the phosphorus load in eutrophic water bodyComparison in dynamic experiment. Environmental Science and Pollution Research, 2022, 29(11): 16427-16435. (SCI)
[15] Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment. Frontiers of Environmental Science and Engineering, 2022, 16(3): 29. (SCI)
[16] Al-PHOSLOCK thin-layer capping to control phosphorus release from sediment: effect of hydraulic retention time and phosphorus migration/transformation mechanism. Journal of Soils and Sediments, 2021, 21(6): 2474-2482. (SCI)
[17] The effect of secondary capping on the control of phosphorus release from sediment by activated thin-layer capping with Al-PIA. Environmental Science and Pollution Research, 2021, 28(14): 18062 - 18069. (SCI)
[18] ԸwƂ估䌦ЃȺӵ൪ጷŵЧ. hѧ. 202115(6): 1927-1936.
[19] ԞVΌЃȺеpЧ. hѧ, 2021, 15(3): 1016-1024.
[20] һN{ʽwIBˮwQЧ. ASWѧȻƌW棩, 2019, 40(4): 471-475.
[21] ոԜQˮS@ԵԴͷŵĿЧ. ƌW, 2019, 31(4): 961-968.(EI)
[22] ոԜQˮS@ij. hW, 2019, 38(2): 325-333.
[23] Characterizing the Correlation between Dephosphorization and Solution pH in a Calcined Water Treatment Plant Sludge. Environmental Science and Pollution Research, 2018, 25(19): 18510-18518. (SCI)
[24] ոԜQˮS@ƱײϹղŻ. ASWѧȻƌW棩, 2018, 40(1): 51-56.
[25] ʯӸwpᎧˮԴˮ쵪ؓ. ƌW, 2017, 29(3): 567-574 . (EI)
[26] QˮS@าǿƵ൪ͷЧ. ASWѧȻƌW棩, 2016, 38(3): 347-351.
[27] ʯӸwpIBˮwؓ. ƌW, 2016, 28(4): 726-733. (EI)
[28] Remediation of nitrogen-contaminated sediment using bioreactive, thin-layer capping with biozeolite. Soil & Sediment Contamination, 2016, 25(1):89-100. (SCI)
[29] Nitrogen reduction using bioreactive thin-layer capping (BTC) with biozeolite: A field experiment in a eutrophic river. Journal of Environmental Sciences, 2016, 42: 119-125. (SCI)
[30] Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 2016, 283: 730-739. (SCI)
[31] Nitrogen reduction in eutrophic landscape river using bioactive multilayer capping (BMC) with biozeolite and sand. Journal of Soils and Sediments, 2013, 13(7): 1309-1317 (SCI).
[32] Biozeolite capping for reducing nitrogen load of the ancient canal in Yangzhou City. Water Science and Technology, 2012, 66 (2), 336-344. (SCI)
[33] ɽˮeпסֲ@Ⱦur. ݴWW(ȻƌW)2011, 39(4): 608-612.
[34] 3NֲϵyIBˮwЧо. ASWѧ(ȻƌW)2011, 32(3): 309-312.
[35] 3NֲϵyIBˮwQЧо. hѧ2010, 4(1): 91-95.
[36] ֲϵyIBˮwQЧо. ASWѧȻƌW棩2010, 31(5): 576-579.
[37] ɽˮCˮ|Rָur. ASWѧ(ȻƌW), 2010, 31(2): 215-217.
[38] ɽˮeDDTsrˎLUu. ЇhOy, 2009, 25(2): 22-25.
[39] ɽˮؽٛ@ȾFur. ASWѧ(ȻƌW), 2009, 30(4): 454-457.
[40] Pˮؚ/|ˇijЧо.Їoˮˮ, 2007, 23(15): 13-16.
[41] ژˮ~GLcϸԇо. ˮg, 2007, 1(2): 14-17.
[42] ԭλ|gˮԴˮ|ԇо.hƌWW, 2006, 26 (5): 785-790.
оI
-
ЃȺ()ϪB}Փcg
-
ˮw@Ⱦԭλw}Փcg
-
ˮhÓײcOаl
-
кڳˮwCwϵcPIgо
-
йࡢYԴ
-
dOӋwϵcǻ۹
-
r@ˮBgcIJOаl
[1] 2010.9 -- 2013.6
BƼW ʿо WʿWλ
[2] 2003.9 -- 2006.6
BƼW Tʿо WTʿWλ
[3] 1999.9 -- 2003.7
սBIWԺFսBW oˮˮ W WʿWλ
[1] 2023.1 --
ASW ľ̌WԺ ϵϵ ڍ oˮƌWčI̎
[2] 2017.1 -- 2022.12
ASW ľ̌WԺ ϵ̹h֧ӛϵ ڍ oˮƌWčI̎
[3] 2008.12 -- 2016.12
ASW ľ̌WԺ v ڍ oˮƌWčI̎
[4] 2006.7 -- 2008.11
ASW ľ̌WԺ ڍ oˮƌWčI̎
ϵʽ
ʱ : 361021
ͨѶ/칫ַ : м668̖ASWľѧԺ
: zhenming@hqu.edu.cn

















