125 825—835 Ļʽ
ˣй̻оԺ˾ ܹ/ڼ߹ ֣˲ ʿ
835—910
}ĿδlBh̼ɳmlչcGɫgоMչ
ˣйԺԺʿҵѧ
910—935
}Ŀˮɫչ·cʵ
ˣй̻оԺ˾ ܹ/ڼ߹ ֣˲ ʿ
935—1000
}ĿˮhCcB}
ˣ·£ɽѧԴcоԺ ԺڡʿʦձԺ⼮Ժʿձ軷ʿձӴ·ɳ·gʿɽ|ʡ“һһh”피˲ţV|ʡ齭Wߣɽ|ʡHƼԌңձԺ|ίTЇcdЌίίTɽ|ʡhobIfLwԺʿLڏˮԴعchọևҼʡĿ30헣ȫ20ҵĭhoB}ṩgָOӋ^ЇcаlӋȇҡʡhoIg_lĿ5헣ؓ؟OӋʩďV纣d^ҎOӋˮϵ̽ᱻu“B֮”lWgՓ100ƪ@Ìڙ60헡@ձͨʡĿ7Ρ㼼gˆT1ΣձľWl1Σ2022ɽ|ʡƼߡ
1000—1010 Ъ 骄(Ʒ Ԫȡ Їoˮˮs־˾Ȇλٝṩ\ƷٝλϵˣIȫ 13752275003)
1010—1035
}ĿGPUȫˮijк靳ЧģMg
ˣS AWʿΏV|ʡˮW¡ЇȻYԴWˮYԴIίTίTV|ʡˮl늹̌WˮԴIίTίTHˮĿƌWfTݴW2005xo˲֧Ӌ2006xV|ʡߵȌWУ“ǧʮ”BxYχȻƌWĿo˲֧ӋĿ齭ݼAyM^оҪ̽ӑֻƽ̨ϘˮAyģͣȡһϵЄоɹYˮИIЌ헽MĿбȝγəCԼAgM^ϵyо_l˻GISϵyijЃȝAAϵyˇشˮn}о΄գкrIcԴ@Ⱦؓɶ㷽Mоͨ^кrF^yзcԴ@Ⱦڛ_ˢЧMо˻SWMMģ͵ijзcԴ@ȾؓɺģͺͻHSPFģ͵rIcԴ@Ⱦģ͡
1035—1100
}Ŀmȫ¹Iˮ̎Q
ˣmˮ(Ϻ)˾ Rϖ| BmIˮ̎FYù̎ʮˮ̎ИIIˮ̎Q
1125—1200
}ĿЭͬˮμںӺ̬еӦ
ˣǷǣϺͨѧϢcѧԺڣ̫ϿѧԺԺʿ,ѧƸڣSCIڿNano-Micro LettersࣨIF-21,ĤcϸصʵоIӺBw}ʯ{ױĤоƬϵyۑBͼ{Ӳϣʯʯīϩ̼{ܵȣ{댧w·gFET늳ءȣ{ӹg{ӡ{С{Mb{Ĥ̡{gȣ973863ȻƌWcĿʮ헿Ŀ͎܊˿ƼĿ
骄(Ʒ Ԫȡ Їoˮˮs־˾Ȇλٝṩ\ƷٝλϵˣIȫ 13752275003)
1251200—1330
125
ˣS/ Jin Huang
1330—1355
1355—1420
ˣ˾RlƽʿĴpWľ̌WԺԺLڣTʿоؕаlչIң“}Uˮȫ̎üYԴ”ȫѭȟҸԴJournal of Environmental Science and Engineering TechnologyίҪˮ@ȾcgС悛@ˮB̎g@̎YԴõȷоֺͅcҼʡĿ6헣ЏdĿ10헣ֵطИIIMĿ50Ȩר5ڡEnvironmental PollutionRSC AdvancesWater Science and Technology͡Їoˮˮڿѧ60ƪоɹ “؞Vأش@ˮ̎ϵybü”@2011Ї㪄
1445—1510
}Ŀ ™ĤƷˮеİ ˣNittoF ܼ Zs
˺飺·ĤоԺg߹ܡ
ˮ̎ИIʮ꣬I߷ĤϺϳɣĤxՓAоˮ̎OӋȣSՓ֪RcF`
նF-ܹ˾gOIIFꠣڹIUˮŷţˮ˸ȶIƄ˶헳ɹ
}Ŀˮϵͳǻ۹ܿغʵ
ˣ껕FϿǻˮƼ˾ҵܼ࣬ӵн20ˮǻˮѯƣά飬αҺˮҵǻۻת;гľ⡣
1545—1610
}ĿESG ҵˮԴ¶cʵ
1610—1635
}Ŀˮ{ˮ̼pЧо
ˣ ͬHԃЇ˾ R oˮ/ڼ߹
ˮ{ˮ̼pЧо
Carbon Emission Reduction of Reclaimed Water Use
Substitution for Inter-Basin Water Transfer and Sustainability of Urban Water Supply in Valley Area
ժҪлRˮYԴȱͭh˻pƄ˂̽ӻˮԴԜpp@ЩӰ푡{ˮInterbasin Water TransferQIBWTѳɠQֲȱˮ^ƽˮһNQMIBWThxݔ|ˮɱ߰K´̼ŷšˮãRWU˷@һṩһϣؑcij{ȵ^о̽ӑ˿ٳлˮYԴͭhLUKȷRWUcIBWT̼ŷŷ杓Ӱ푡Ӌ㷨A̼ŷŏMӋ͏Y@ʾIBWTRWU\Еr̼ŷŏȷքe0.7447 KgCO2/m3 0.1880 KgCO2/m3 ɴ˿Ҋͨ^RWUɌ̼ŷŜp0.5567 KgCO2/m375%Ľһ̼Żƣǿ͵ʹˮܹԼԴģתơ⣬ˮڳˮũҵµЧ价Ӱ죬Ԥ˹滮ģˮʵֵDZ̼ŹֵͨӰˮú̼ЧؽʶӦIJԡּڽȫɡƶȺͬʱٽӹȳеѧc粿źϷӻáоɹ㷺ϾˮԴѹƶ̼ŷŹоҪ岢ɶʵֿɳԷչס
Abstract: Urbanization confronts the dual challenges of water scarcity and environmental degradation, prompting the exploration of diverse water sources for mitigating these impacts. Inter-basin water transfer (IBWT) has emerged as a solution to balance urban water demand and supply in areas with local water shortages. While IBWT can deliver high-quality water over long distances, it is costly, often contributing significantly to carbon emissions. Reclaimed water use (RWU) presents a promising alternative to address this dilemma. In this paper, a valley region of Chongqing municipality in Southwest China, which is confronted with water and environmental risks resulting from rapid urbanization, was explored and discussed as a case study to assess the potential impact of RWU on reducing carbon emissions as compared to IBWT. A method of accumulative accounting was adapted to calculate and sum up carbon emission intensities at various stages, revealing that the operational carbon emission intensities of IBWT and RWU are 0.7447 KgCO2/m3 and 0.1880 KgCO2/m3 , respectively. This indicates that RWU substitution can reduce carbon emissions by 0.5567 KgCO2/m3 or 75%. This paper further elucidates the mechanism behind carbon emission reduction, highlighting the energy-saving benefits of using reclaimed water locally without recourse to extensive transportation or elevation changes. Additionally, this result presents three scenarios of reclaimed water use, including urban miscellaneous water, river flow replenishment, and agricultural irrigation in relation to their substitution effects and environmental impacts. Estimates of carbon emission reductions from reclaimed water use were projected at the planned scale, with the maximum potential of reclaimed water utilization predicted. Finally, this paper proposes an enhanced strategy to identify and prioritize factors affecting reclaimed water utilization and the effect of carbon emission reduction. This paper aims to facilitate the establishment of a robust legal, institutional, and managerial framework while fostering interdisciplinary and cross-sectoral cooperation mechanisms in valley urban areas. The methodology employed can be universally applied to other regions grappling with severe water stress, thereby facilitating endeavors toward carbon reduction and contributing significantly to the attainment of water sustainability
1635—1700
}ĿĤƱˮؼ⼰ӦԲ
ˣ רңйԺԺʿ̴ѧ ڡʿʦι̬רίԱίԱߵѧУѧcרҵѧָίԱίԱȫĤίԱίԱȾרίԱίԱԺʿڻѧcĿѧоƹˮȫϡɢԴˮ˾ӻȷ棬ɹз˾֪ʶȨˮϵװȡöͻԳɹдԵijɾ͡ҿƼ8ʡƼͽѧɹһȽ8Ƚ12ר70ѧǽܳ꽱ȫչȽߺȫƼߵ
1700—1730
Ժʿ ˮۺ
ЇԺԺʿͬWԡ@ͬΣ߳ˮhȫgԡ}^cʾ@ͬβˮhȫͷ鰲ȫOˮ@ˮܾWˮܾWհׅ^ߛ@ˮռʣˮŷ@ͬεҪ΄գˮ@ˮɂܾW\СЇԺԺʿűʾFA҇кӵ@ȾҪ}ˮܾWӡeӡƓpˮhM˹ԿyPIrڡֻЌQùܾW}ˮhҊЧ
ԺʿĈ}“@ͬΣ߳ˮhȫg”ʾˮhM“@ͬ”PIrڡУˮܵѳɠԴB@ȾҪ“”“Դ”ԺʿָeӺƓp{dzˮϵy@ͬεĻA@ȾğɹVԷˮֹܙz龮ӆ}ˮλˮԙzyˮܾWƓprˮˮ|wDԷ@ˮܾWƓprSᣬԺʿB꼾_ԶԴ}ϛ@Ⱦµĺˮ|LUK{꼾@ȾPI@Ӹ죬{rˮ|Oye@Ⱦfͬxˇаl]Ҫá
骄(Ʒ Ԫȡ Їoˮˮs־˾Ȇλٝṩ\ƷٝλϵˣIȫ 13752275003)

(ɨά룬ɿٱ Ϻˮҵ껪)
Їoˮˮ2024ˮcɳչϺˮҵ껪
rg2024124-6գ4̖5-6_
hcϺиƵ꣨Ϻɽ^א·208Ū
h ؓ ؟
Iȫ 13752275003 18622273726 O 13702113519








































































































